Read Examples 2.36 to 2.43 in the book. We did not have time to cover all of them in class.
Turn in 3 problems from the ones below
Disclaimer: You should do all of the suggested problems on your own, and I will assume that you do. I would recommend (for the midterm, final, and qualifying exams) that you do many other problems. I am available for help.
Due Wednesday, April 15.
p 155 # 7, 9abd, 10, 14, 23, 28, 29, 31,
B. Let \(X = S^1 \vee S^1\), the circles labeled \(a\) and \(b\), and form \(Y\) by gluing two 2-cells onto \(X\) by the identifications \(a^4\) and \(a^4b^{-2}a^2b^2a^{-2}\). Compute the homology groups of \(Y\).
C. Recall that \(\mathbb{R}P^3 = e^0\cup e^1 \cup e^2 \cup e^3\). Let \(X\) be the space obtained by attaching a 4-cell to \(\mathbb{R}P^3\) where the composition of the quotient map and attaching map \(\Delta: S^3 \to \mathbb{R}P^3 \to \overline{e^3}/\partial{e^3} \cong S^3\) has degree \(3\). Compute the homology groups of \(X\).
D. Recall that \(\mathbb{R}P^3\) is naturally a subcomplex of \(\mathbb{R}P^4\). Compute the homology of \(\mathbb{R}P^4/ \mathbb{R}P^3\) using cellular homology.
E. Suppose we have a smooth embedding \(f: S^1\times D^2 \hookrightarrow S^3\). Let \(K = f(S^1\times 0)\) and \(N(K) = f(S^1\times D^2)\). We call \(K\) a knot and \(N(K)\) its tubular neighborhood. We call \(S^3 – K\) the knot complement. Compute \(H_n(S^3 – K)\) for all \(n\) using Mayer-Vietoris. Carefully specify generators of all spaces involved.